Copied to
clipboard

G = C2×C52⋊C9order 450 = 2·32·52

Direct product of C2 and C52⋊C9

direct product, metabelian, soluble, monomial, A-group

Aliases: C2×C52⋊C9, C522C18, (C5×C10)⋊C9, (C5×C30).C3, C6.(C52⋊C3), (C5×C15).2C6, C3.(C2×C52⋊C3), SmallGroup(450,13)

Series: Derived Chief Lower central Upper central

C1C52 — C2×C52⋊C9
C1C52C5×C15C52⋊C9 — C2×C52⋊C9
C52 — C2×C52⋊C9
C1C6

Generators and relations for C2×C52⋊C9
 G = < a,b,c,d | a2=b5=c5=d9=1, ab=ba, ac=ca, ad=da, dcd-1=bc=cb, dbd-1=b3c2 >

3C5
3C5
25C9
3C10
3C10
3C15
3C15
25C18
3C30
3C30

Smallest permutation representation of C2×C52⋊C9
On 90 points
Generators in S90
(1 32)(2 33)(3 34)(4 35)(5 36)(6 28)(7 29)(8 30)(9 31)(10 53)(11 54)(12 46)(13 47)(14 48)(15 49)(16 50)(17 51)(18 52)(19 62)(20 63)(21 55)(22 56)(23 57)(24 58)(25 59)(26 60)(27 61)(37 80)(38 81)(39 73)(40 74)(41 75)(42 76)(43 77)(44 78)(45 79)(64 89)(65 90)(66 82)(67 83)(68 84)(69 85)(70 86)(71 87)(72 88)
(2 75 69 52 59)(3 60 53 70 76)(5 78 72 46 62)(6 63 47 64 79)(8 81 66 49 56)(9 57 50 67 73)(10 86 42 34 26)(12 19 36 44 88)(13 89 45 28 20)(15 22 30 38 82)(16 83 39 31 23)(18 25 33 41 85)
(1 51 74 58 68)(2 52 75 59 69)(3 60 53 70 76)(4 54 77 61 71)(5 46 78 62 72)(6 63 47 64 79)(7 48 80 55 65)(8 49 81 56 66)(9 57 50 67 73)(10 86 42 34 26)(11 43 27 87 35)(12 44 19 88 36)(13 89 45 28 20)(14 37 21 90 29)(15 38 22 82 30)(16 83 39 31 23)(17 40 24 84 32)(18 41 25 85 33)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81)(82 83 84 85 86 87 88 89 90)

G:=sub<Sym(90)| (1,32)(2,33)(3,34)(4,35)(5,36)(6,28)(7,29)(8,30)(9,31)(10,53)(11,54)(12,46)(13,47)(14,48)(15,49)(16,50)(17,51)(18,52)(19,62)(20,63)(21,55)(22,56)(23,57)(24,58)(25,59)(26,60)(27,61)(37,80)(38,81)(39,73)(40,74)(41,75)(42,76)(43,77)(44,78)(45,79)(64,89)(65,90)(66,82)(67,83)(68,84)(69,85)(70,86)(71,87)(72,88), (2,75,69,52,59)(3,60,53,70,76)(5,78,72,46,62)(6,63,47,64,79)(8,81,66,49,56)(9,57,50,67,73)(10,86,42,34,26)(12,19,36,44,88)(13,89,45,28,20)(15,22,30,38,82)(16,83,39,31,23)(18,25,33,41,85), (1,51,74,58,68)(2,52,75,59,69)(3,60,53,70,76)(4,54,77,61,71)(5,46,78,62,72)(6,63,47,64,79)(7,48,80,55,65)(8,49,81,56,66)(9,57,50,67,73)(10,86,42,34,26)(11,43,27,87,35)(12,44,19,88,36)(13,89,45,28,20)(14,37,21,90,29)(15,38,22,82,30)(16,83,39,31,23)(17,40,24,84,32)(18,41,25,85,33), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)>;

G:=Group( (1,32)(2,33)(3,34)(4,35)(5,36)(6,28)(7,29)(8,30)(9,31)(10,53)(11,54)(12,46)(13,47)(14,48)(15,49)(16,50)(17,51)(18,52)(19,62)(20,63)(21,55)(22,56)(23,57)(24,58)(25,59)(26,60)(27,61)(37,80)(38,81)(39,73)(40,74)(41,75)(42,76)(43,77)(44,78)(45,79)(64,89)(65,90)(66,82)(67,83)(68,84)(69,85)(70,86)(71,87)(72,88), (2,75,69,52,59)(3,60,53,70,76)(5,78,72,46,62)(6,63,47,64,79)(8,81,66,49,56)(9,57,50,67,73)(10,86,42,34,26)(12,19,36,44,88)(13,89,45,28,20)(15,22,30,38,82)(16,83,39,31,23)(18,25,33,41,85), (1,51,74,58,68)(2,52,75,59,69)(3,60,53,70,76)(4,54,77,61,71)(5,46,78,62,72)(6,63,47,64,79)(7,48,80,55,65)(8,49,81,56,66)(9,57,50,67,73)(10,86,42,34,26)(11,43,27,87,35)(12,44,19,88,36)(13,89,45,28,20)(14,37,21,90,29)(15,38,22,82,30)(16,83,39,31,23)(17,40,24,84,32)(18,41,25,85,33), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90) );

G=PermutationGroup([[(1,32),(2,33),(3,34),(4,35),(5,36),(6,28),(7,29),(8,30),(9,31),(10,53),(11,54),(12,46),(13,47),(14,48),(15,49),(16,50),(17,51),(18,52),(19,62),(20,63),(21,55),(22,56),(23,57),(24,58),(25,59),(26,60),(27,61),(37,80),(38,81),(39,73),(40,74),(41,75),(42,76),(43,77),(44,78),(45,79),(64,89),(65,90),(66,82),(67,83),(68,84),(69,85),(70,86),(71,87),(72,88)], [(2,75,69,52,59),(3,60,53,70,76),(5,78,72,46,62),(6,63,47,64,79),(8,81,66,49,56),(9,57,50,67,73),(10,86,42,34,26),(12,19,36,44,88),(13,89,45,28,20),(15,22,30,38,82),(16,83,39,31,23),(18,25,33,41,85)], [(1,51,74,58,68),(2,52,75,59,69),(3,60,53,70,76),(4,54,77,61,71),(5,46,78,62,72),(6,63,47,64,79),(7,48,80,55,65),(8,49,81,56,66),(9,57,50,67,73),(10,86,42,34,26),(11,43,27,87,35),(12,44,19,88,36),(13,89,45,28,20),(14,37,21,90,29),(15,38,22,82,30),(16,83,39,31,23),(17,40,24,84,32),(18,41,25,85,33)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81),(82,83,84,85,86,87,88,89,90)]])

66 conjugacy classes

class 1  2 3A3B5A···5H6A6B9A···9F10A···10H15A···15P18A···18F30A···30P
order12335···5669···910···1015···1518···1830···30
size11113···31125···253···33···325···253···3

66 irreducible representations

dim1111113333
type++
imageC1C2C3C6C9C18C52⋊C3C2×C52⋊C3C52⋊C9C2×C52⋊C9
kernelC2×C52⋊C9C52⋊C9C5×C30C5×C15C5×C10C52C6C3C2C1
# reps112266881616

Matrix representation of C2×C52⋊C9 in GL4(𝔽181) generated by

180000
0100
0010
0001
,
1000
0100
00590
000135
,
1000
04200
00590
00042
,
132000
0010
0001
013200
G:=sub<GL(4,GF(181))| [180,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,59,0,0,0,0,135],[1,0,0,0,0,42,0,0,0,0,59,0,0,0,0,42],[132,0,0,0,0,0,0,132,0,1,0,0,0,0,1,0] >;

C2×C52⋊C9 in GAP, Magma, Sage, TeX

C_2\times C_5^2\rtimes C_9
% in TeX

G:=Group("C2xC5^2:C9");
// GroupNames label

G:=SmallGroup(450,13);
// by ID

G=gap.SmallGroup(450,13);
# by ID

G:=PCGroup([5,-2,-3,-3,-5,5,36,2888,4284]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^5=c^5=d^9=1,a*b=b*a,a*c=c*a,a*d=d*a,d*c*d^-1=b*c=c*b,d*b*d^-1=b^3*c^2>;
// generators/relations

Export

Subgroup lattice of C2×C52⋊C9 in TeX

׿
×
𝔽